본문 바로가기

선생님이 되기위한 자료/전공자료(P.E)

[전공체육] 체육측정평가

반응형

 

<체육측정평가>

기초 통계

측정 변인의 분류

1. 명목 척도(명명 척도)

- 단순한 분류의 목적에서 대상물을 구분하기 위하여 이름을 부여하는 척도(단순한 구별)

- 서열성, 동간성, 절대영점의 의미가 모두 없음(ex. 유니폼 번호, 주민등록번호)

 

2. 서열 척도

- 측정된 변인의 대/소가 구분되는 것(크다/작다와 같은 수리적인 조작은 가능, 가감승제x)

- 서열성은 가지고 있지만 동간성x (ex. 백분위점수)

 

3. 동간 척도

- 측정 변인 간 간격이 동일한 동간성을 가짐. 덧셈 법칙은 성립하나 곱셉 법칙은 성립x

- 서열성, 동간성은 가지지만 절대영점x (ex. 온도)

 

4. 비율 척도

- 서열성, 동간성, 절대영점의 특징을 모두 가지며, 덧셈법칙과 곱셉법칙 모두 성립.

- 수리적인 조작이 가능하도록 연속된 숫자로 이루어진 변인(대부분의 체력검사)

 

연속변인(동간, 비율) : 수리적인 조작이 가능한 변인

비연속변인(명목, 서열) : 수리적인 조작이 어려운 변인(구분하는 목적)

 

정규분포와 편포

1. 정규분포(정상분포)

- 좌우 대칭이 종 모양을 갖춘 모양의 분포를 정규 분포라고 한다. 평균치, 중앙치, 최빈치 모두 일치

2. 편포도와 용도

- 편포도란 좌측 또는 우측으로 빈도수가 많이 치우치는 비대칭 모양을 의미.

왜도 : 분포의 비대칭의 정도. 즉 분포가 기울어진 방향과 그 기울어진 정도를 나타내는 척도

왜도 = 0 : 정규분포

왜도 > 0 : 좌측으로 치우침(양의 왜도, 정적편포) 최빈치, 중앙치, 평균치 순

왜도 < 0 : 우측으로 치우침(음의 왜도, 부적편포) 평균치, 중앙치, 최빈치 순

 

첨도 : 첨도란 분포의 산()의 뾰족한 형태를 가르킴. (정규분포보다 높거나 낮은 상태) 19년도 기출

첨도가 0에 가까우면 : 정규분포에 가까움.(중용도)

첨도 > 0 : 정규분포보다 완만하게 납작하다.(평융도)

첨도 < 0 : 정규분포보다 더 뾰족하다.(첨융도)

 

집중경향값(중심경향값) 측정한 자료가 특정한 중심으로 몰리는 경향

1. 평균

- 평균(Mean) = 한집단의 모든 점수의 총합 / 사례수, 연속적 변인의 자료에 유용, 극단값의 영향

2. 중앙값

- 측정된 자료를 순서대로 나열했을 때, 중간에 해당하는 값

- 사례수가 홀수일 때, 중앙값(Median) =

-사례수가 짝수일 때,

점수의 평균값.

- 측정된 원자료의 서열에 변화가 없는 한 변하지 않는 장점이 있어 서열척도에 유용.

 

3. 최빈값

- 어떤 집단의 점수 분포에서 가장 빈도가 많은 점수.(의류회사, 신발업체에서 의미있게 사용)

 

명명척도

서열척도

동간척도

비율척도

최빈치

O

O

O

O

중앙치

 

O

O

O

평균치

 

 

O

O

 

분산도(변산도) 점수의 흩어진 정도

1. 범위

- 최고 값의 상한계에서 최저 값의 하한계를 뺀 값

장점 : 분산도를 간단하게 파악할 수 있음

단점 ; 두 개의 점수에 의해서만 결정되므로 정밀하지 못한 값(극단 값의 영향)

 

2. 사분위편차

- 범위의 일종. 수집된 자료를 백 등분하여 나열했을 때, 75번째 점수에서 25번째 점수사이의 점수들의 평균.

- 중앙값인 50백분위점수를 중심으로 자료가 흩어진 정도를 의미.

장점 : 범위에 비해 극단 값의 영향, 범위 내에 있는 많은 값들을 고려하므로 보다 정밀.

단점 : 25백분위수와 75백분위점수를 계산해야하는 번거로움.

- 서열척도의 변산도 계산은 사분위편차를 사용하는 것이 바람직.

 

3. 분산과 표준편차

- 모든 자료를 고려하야 분포의 흩어진 정도를 나타낸 분산도 지수(범위, 사분위편차보다 정밀)

(1) 분산

- 분산(S²) = 자료가 흩어진 정도(2차원적인 면적)
(2) 표준편차

- 표준편차(SD) = 자료가 평균적으로 흩어진 자료(1차원적인 거리)

- 표준편차는 표집오차가 작아 전집의 분산도를 추정하는데 추정의 오차가 가장 적다.

- 분산과 표준편차는 사분위편차에 비해 극단 값의 영향을 많이 받는다.(모든 점수 고려)

구분

특성

용도

범위

- 통계적인 신뢰성이 가장 낮다

- 계산이 가장 간편하다.

- 변산도를 빨리 알아야 할 때

- 양 극단의 점수를 알려고 할 때

사분위편차

- 중앙치를 기준으로 하는 변산도

- 중앙치만 알고 있을 때

- 분포의 양쪽이 손상되었을 때

- 극단적인 점수가 있을 때

표준편차

- 통계적인 신뢰성 가장 높다.

- 측정집단의 개인차 파악 가능

- 계산이 가장 복잡

- 높은 신뢰도를 요구할 때

- 정상분포와 관련된 해석이 필요할 때

평균편차

- 비교적 신뢰성 높다.

- 극단적인 점수가 있어 표준편차의 신뢰성에 영향을 미칠 우려가 있을 때

 

(점수)

변환 점수

- 원점수 만으로는 점수의 큰 의미를 부여받지 못하므로 개인의 위치를 평가하는 것이 어렵다.

- 따라서 평균과 표준편차를 이용하여 변형한 변환점수를 이용할 수 있다.

1. 백분위수

- 측정치를 크기에 따라 백 등분 했을 때 각 등분에 해당하는 점수

- 두 원점수간의 대소의 비교는 가능하나 구체적으로 어느 정도 크고 작은가를 판단x

2. 표준 점수(Z점수)

- 표준점수(Z) = 원점수 평균 / 표준편차

- 평균0, 표준편차가 1인 척도로 동일하게 변환이 가능하기 때문에 점수를 구체적으로 비교 가능

- 장점 : 측정의 단위가 다른 두 점수를 비교 가능

서로 다른 특징을 갖고 있는 두 집단의 동일 종목 측정치간 비교 가능

특정 점수 간 사례수를 계산 가능

T점수 = 50 + 10Z (평균이 50이며, 표준편차가 10)

 

상관

- 두 변수가 모두 연속 변인일 때, 한 변수가 변할 때, 다른 변수가 어떻게 변하는가를 의미.

- 가외변인(온도, 개인특성 등)을 통제한 상태에서 독립변인과 종속변인의 관계를 인과관계로 해석 가능.

- 상관의 정도

(1) 피어슨의 적률상관계수(r)

- r은 관계의 정도와 방향에 따라 -1.0부터 +1.0까지 값을 나타냄. (관계가 전혀 없을 때는 0.0)

- 상관계수의 활용

(1) 재검사신뢰도 : 한 검사를 두 번 실시하여 검사 간 상관이 높으면 검사의 신뢰도

(2) 준거관련타당도 : 준거검사(기존)와 현장검사(새로운)의 상관이 높으면 두 검사가 동일한 것을 측정하는 것으로 판단 현장검사의 타당도

 

평균차이검증

1. 두 집단의 평균이 의미 있는 차이가 있는가를 분석하는 통계 : t검정

2. 세 집단 이상의 평균 차이를 한 번에 검증하는 통계 방법 : 분산분석(ANOVA)

3. 독립 t검정의 검정절차

(1) 영가설과 대립가설을 세운다.

(2) 유의수준을 설정한다. (5%, 1% ) 유의 확률값(p)이 유의수준보다 낮아야 유의미한 값.

유의수준(α수준)5%로 설정할 때, 95%의 신뢰수준에서 올바른 결정을 내리려는 것을 의미.

(3) 검정통계치인 t값을 계산한다. 가설부정기준치(임계값)보다 t값이 높아야 유의미한 값.

(4) t통계표에서 기각치를 찾아 계산된 t값과 기각치를 비교한다.

(5) 결론을 내린다. (분산 분석일 경우 사후검증 절차를 거쳐야 한다.)

 

(추리통계)

- 모수치를 가진 전집에서 적절한 방법으로 표집(sample)하여 통계치를 산출하여 모수치를 추정하는 방법. 모집단에서 표본이 골고루 표집 되어야 신뢰성이 높아지기 때문에 표집방법이 매우 중요.

 

표집 방법

1. 확률 표집

(1) 단순 무선 표집 : 모든 구성원이 표본에 뽑힐 가능성이 동일(무작위, 전집을 가장 잘 대표함)

(2) 체계적 표집 : 전집에 번호를 매긴 후 뽑고자 하는 수로 나눈 값만큼을 체계적으로 표집

(3) 유층 표집 : 연구하고자 하는 목적에 영향을 줄 수 있는 요인을 부분 집단으로 나누어 각 부분 집단에서 단순 무선 표집하는 방법.

(4) 군집 표집 : 표집의 단위가 개인이 아닌 집단인 표집 방법

(5) 다단계 표집 : 앞선 확률 표집들을 동원하여 최종적으로 개인을 표집하는 방법

 

2. 비확률 표집

(1) 목적 표집 : 전문적 지식을 갖춘 전문가에 의해 연구 목적에 맞게 의도적으로 표본을 추출하는 방법

(2) 할당 표집 : 여러 범주를 정하고 각 범주를 대표할 수 있는 사례 수를 주관적으로 판단에 따라 할당하여 표집 하는 방법 (확률의 객관성을 결정할 수 없는 신뢰성↓ → 표집의 오차를 알 수 없음)

 

1종 오류와 제 2종 오류

1. 1종 오류 : 실제로 영가설은 사실인데 이를 부정하는 오류(알파)

2. 2종 오류 : 실제로 영가설은 거짓인데 이를 긍정하는 오류(베타)

- 1종 오류(α)를 범할 확률을 유의 수준이라고 한다.

- 연구 가설은 제 1종 오류를 범하지 않는 것을 원칙으로 한다.

 

양방검증과 일방검증

1. 양방검증 : 두 평균치 간의 차이가 있는지의 여부를 검증

- 양쪽 방향의 가설 부정 기준치보다 작은지 큰지를 따져서 가설을 기각 또는 채택(Z=1.96)

2. 일방검증 : 두 평균치 간의 어느 한쪽이 높거나 낮은 경우를 검증

- 한쪽 방향의 가설 부정 기준치보다 작은지 큰지를 따져서 가설을 기각 또는 채택(Z=1.645)

연구자의 목적이나 관심에 따라 차이가 있는지(양방검증), 높은가 낮은가(일방검증)을 선택

양방검증은 유의수준(α) 값을 양쪽으로 나누어야 한다.(0.25/0.25) 따라서 유의한 차이가 생길 확률(면적)이 적다는 것을 의미하며 이는 같은 조건에서 가설부정기준치가 양방검증일 때 더 크게 나온다는 것을 의미하기도 한다. ( =일방검증이 더 유의하게 나올 가능성이 더 크다.)

 

 

 

각종 통계 방법

1. 독립 t검증

- 두 집단 간 평균치의 차이가 유의한 차이가 있는지를 밝히는 데 있다.

- 스포츠 분야에서 일반적으로 30 이하의 소표집인 경우에 t검증을 실시한다.

 

2. 종속 t검증

- 한 집단을 대상으로 반복 측정(, )하였을 경우 종속 t검증을 실시한다.(사전검사-사후검사)

- 종속 t검증은 개인 능력을 동일시하기 때문에 독립변인과 종속변인의 관계가 확실(동질성이 보장)

 

3. 일원 독립 변량분석(F검증)

- 집단이 두 개 있을 때도 물론이고 세 개 이상일 때 집단의 평균치간의 차이를 한꺼번에 검증

- 세 집단 간의 유의한 평균차이가 있을 때 어느 집단과 어느 집단의 평균치간의 차이가 있는지를 알아야 하기 때문에 사후검증을 실시해야 한다.

- 사후검증은 T검증을 여러 번 실시했을 때 일어나기 쉬운 제 1종 오류를 범하는 것을 줄여준다.

독립변인의 수가 하나일 때 = 일원 / 독립변인의 수가 두 개일 때 = 이원

 

4. 일원 반복측정 변량분석(F검증)

- 종속 t검증의 연장으로 한 집단의 전, , 후의 관계를 알아보는 측정 방법.

 

5. χ2 검증

- t검증, F검증 : 전집의 분산이 같거나 정상분포라는 가정이 필요

- 이와 달리 전집의 가정이 필요 없이 명명척도에 대한 여러 범주의 비율을 통해 차이를 분석

- 명명척도에 의해 빈도자료가 수집된 것의 범주 간 차이를 알고 싶을 때 사용하는 통계 기법.

 

6. 비모수적 통계

- 전집분포의 정규성이 가정되지 못한 경우(정상분포x)와 자료가 서열척도 및 명명척도 등으로 수집되었을 경우 비모수적 통계를 실시해야 신뢰성 있는 결과를 얻을 수 있다.

- 가설 검증력은 비모수적 통계가 모수적 방법보다 덜 정확하다는 단점이 존재

사례 수가 증가할수록 이에 비례하여 표준편차가 커지기 때문

- 스포츠 분야에서 표본 집단의 서열은 정해지지만 정확한 실제 점수는 주어지지 못했을 때 사용

(1) 두 표본의 비교

두 개의 독립표본 비교 Mann-Whitney U검증(서열척도로 수집된 두 독립표본의 차이검증)

두 개의 종속표본 비교 Wilcoxont검증(종속 t검증과 비슷)

 

(2) 순위상관계수(Spearman)

- 서열 척도로 자료가 구성되었을 경우 두 변인간의 단순 상관을 알아보기 위한 상관법.

- 순위상관계수(r) 역시 -1 ~ +1사이의 값을 취한다. (적률상관계수와 동일)

- ex) 동영상을 관람시키고 스포츠 기술을 지도한 뒤 멀리뛰기 기록 순위 vs 교사의 직접지도를 통한 멀리뛰기 기록 순위 간의 상관이 있는지 알아보고자 할 때 유용하게 사용.

 

 

7. 신뢰도 분석

(1) 자연과학 : 재검사 신뢰도 분석법을 사용하여 전/후 측정을 상관 비교

(2) 사회과학 : 설문지 사용으로 설문지의 구성이 정교화된 문항으로 되어있는지를 분석.

Cronbach (α) 방법을 많이 사용

Cronbach (α) : 한 개의 문항을 한 개의 설문지로 가정하고 문항 간의 유사성을 추정한 것으로 유사성이 높으면 신뢰성이 높다.

- ex) A,B,C 연구자의 선수 5명에 대한 평가결과 중 A-B연구자의 선수순위가 같게 평가되었고, C의 연구자의 순위가 다르게 평가되었을 경우 C연구자의 신뢰성이 낮다고 판단할 수 있다.(측정치간의 오류)

- Cronbach 값이 탐색적인 연구에서는 .60 / 기초 연구 분야 .80 / 중요한 결정이 요구되는 응용분야 .90이상이어야 한다.

 

체육측정평가의 이해

검사의 목적

1. 동기유발, 성취수준 평가, 향상도 측정, 진단, 처방, 성적 부여, 교육프로그램 평가, 분류와 선발, 미래의 수행력 예측

- 향상도 측정 시 천정효과의 문제점

(1) 사전 검사에서 높은 점수를 받은 학생이 향상될 수 있는 범위가 상대적으로 좁다.

(2) 최초검사에서 높은 점수를 받은 학생과 낮은 점수를 받은 학생에게 동일한 단위가 부여되는 것의 부적절함

 

검사의 종류

1. 평가 기준에 따라서

(1) 규준지향검사 : 학생들의 개인차를 변별하는데 주된 관심(선발적 교육관)

규준지향검사에서 얻어진 점수는 국가 수준의 규준(기준)과 비교되어 해석되는 것이 바람직
(2) 준거지향검사 : 학생들이 수업 목표를 달성했는가를 알고자 할 때.(발달적 교육관)
준거지향검사가 제대로 실행되기 위해서는 타당도와 신뢰도가 높은 준거(기준)의 설정이 가장 중요.

 

2. 평가의 기능(또는 시기)에 따른 분류

(1) 진단 평가 : 수업 초기 학생들의 출발점 위치를 알아보기 위해 실시되는 평가

(2) 형성 평가 : 수업 중간에 실시되는 평가.

- 학생들의 문제점 파악하고 긍정적인 피드백 제공

- 수업의 적절성 모니터링

- 학생들의 연습의 적절성 파악

- 수행평가와 유사한 평가 방법

(3) 총괄 평가 : 수업의 마지막 시기에 실시되는 평가.

- 학생의 성취수준 평가.

- 성적을 부여.

- 수업의 효과를 나타내는 지표

 

체육측정평가에서 최근 강조되고 있는 것

1. 건강관련체력이 강조된다.

- 건강관련체력 : [심폐지구력, 근력, 근지구력, 유연성, 신체조성]

- 운동관련체력 : [순발력, 민첩성, 스피드, 평형성, 협응성 등]

2. 준거지향검사가 강조된다.

3. 수행평가가 강조된다.

- 수업활동과 평가활동이 동시에 일어나도록 함

- 실제적인 상황에서의 학생의 능력을 평가하여 학생의 진정한 능력을 평가

 

 

규준지향검사의 타당도와 신뢰도

- 타당도 : ‘검사가 측정하고자 하는 속성을 제대로 측정 하는가

(타당도의 유형)

타당도의 일반화(Schmidt, Hunter)

- 동일한 준거와 예언변인을 사용한 많은 연구결과들을 메타분석의 개념을 사용하여 일반화하는 방법

- 이 방법의 결점은 적절한 검증력을 갖기 위해서 아주 많은 수의 연구(표본)들이 필요하다는 점

메타분석 : 동일하거나 유사한 주제로 연구되어진 수 많은 연구결과들을 객관적, 계량적으로 종합하여 타당도를 일반화하는 방법

효과크기 : 서로 상이한 측정 척도를 사용하여 얻은 측정치라도 공통의 기준에 의해 평균치 간의 변화 차이를 알 수 있도록 한 것. 효과크기 = 평균치들간의 차이크기 / 표준편차

내용타당도

- 객관적인 자료에 근거하지 않고 전문가에 의해 주관적으로 판단하는 타당도(=영역의 대표성)

- 이원목적분류표를 작성하고 상대적 중요성에 따라 각 영역의 문항 수를 결정 한 후에 세부 문항을 개발하면 내용타당도가 확보된 검사로 해석 가능

이원목적분류표 타당도 확보 / 루브릭(채점기준표) 신뢰도(객관도)확보

(1) 내용타당도 : 검사의 문항이나 목적이 내용 영역이나 전체를 대표하는 정도

(2) 논리타당도 : ‘검사가 특정 운동을 수행하는데 가장 중요한 기능 요소를 측정하고 있는 정도

체육학 분야에서의 내용타당도와 유사한 개념

- 학교에서의 내용타당도 검증 절차

(1) 이원목적분류표 작성

(2) 계획한대로 검사 문항 개발

(3) 검사를 일부 학생들에게 시행하고 채점

(4) 전체검사의 25%의 문항을 선택하여 이원목적분류표 내용/행동 영역에 적절하게 위치하였는지 검토 5%이상 문항이 잘못 위치하였다면, 나머지 75%의 문항들도 모두 검토

- 내용타당도의 단점

명확히 정의를 내리기 어려운 정의적 영역 등은 전문가마다 다른 판단을 내릴 수 있음.

수량화 되어 있지 않아 타당성의 정도를 나타낼 수 없음.

 

준거관련타당도

- 어떤 검사 도구에 의해 측정된 점수를 준거가 되는 검사 도구에 의해 측정된 점수에 비추어 측정한 타당도
1. 공인타당도 (현장검사 준거검사)

- 이미 타당성을 입증 받은 준거검사(실험실검사)에 의해 측정된 점수와 새로 개발한 검사(현장검사)의 관련성을 상관계수를 이용하여 추정하는 타당도.

- 통계적인 방법(상관계수)에 의해 타당도의 정도가 구체적으로 추정.

- 준거 검사의 논리 타당도가 확인되고, 두 검사 간의 상관계수가 .80이상일 경우 현장검사 사용 가능

- 공인 타당도의 단점

기존에 타당성을 입증 받은 검사가 없다면 공인 타당도는 추정될 수 없음.

 

2. 예측(예언)타당도 (현재의 검사 미래의 행위)

- 어떤 검사 점수가 미래의 행위를 얼마나 잘 예측하느냐의 정도. 선수선발 등

- 현장 검사의 점수를 통해서 실험실 검사의 점수를 예측하는 것도 예측타당도.

- 예측 타당도의 단점

타당도를 검증하기 위해서는 일정 기간 동안의 시간이 필요하다.

- 예측 타당도 추정 절차

ex) 새로운 오래달리기-걷기 검사를 개발하여 VOmax를 예측하고, 검사의 예측타당도를 추정할 때의 실제 절차

200명 정도의 충분한 표본을 무선 표집한다.

현장검사(오래달리기-걷기) 와 준거검사(VOmax)를 실시한다.

두 검사의 상관이 높은 것으로 나타나면 다음 단계로 간다.(선형관계 성립)

교차타당화 절차를 수행한다.

- 동일한 표본 크기로 두 집단을 무선 할당(100명씩)

- 집단1을 이용하여 회귀방정식을 산출(회귀 분석이라는 통계방법 사용)

- 산출된 회귀방정식에 집단2의 현장검사 점수를 대입하여 준거검사 점수를 추정

- 추정된 준거검사 점수와 실제로 측정된 집단2의 준거검사 점수 간 상관을 산출

상관이 높을수록 오래달리기-걷기 점수가 VOmax점수를 더 정확히 예측한다는 것을 의미

- 추정의 표준 오차 산출 두 검사 점수의 상관이 클수록 추정의 표준오차는 작고, 추정의 표준오차가 작을수록 더욱 정확한 예측을 의미함.

SEE(추정의 표준오차) = 준거검사의 표준편차

루트 1 - 두검사점수간 상관의 제곱값

회귀분석 : 한 변인 또는 두 변인 이상으로부터 다른 한 변인을 예측하는 식

 

구인타당도

- 구인 : 정신력, 집중력, 불안감 등의 심리적 요소와 같이 직접 측정할 수 없는 특성.

- 구인타당도 : ‘검사 점수가 측정하고자 하는 구인으로 구성되어 있는가?’

- 구인타당도의 통계적 방법

(1) 상관계수법

- 하위 구인들을 검사하는 문항(ex. 축구 드리블 검사)으로부터 얻은 점수와 측정하고자하는 구인(ex. 축구 기능 검사)의 총점과의 상관계수에 의해 구인타당도를 검증하는 방법

 

축구 기능 검사의 총점과 드리블, , 패스와 같이 하위 구인을 측정하는 검사 간 상관이 낮게 나타났다면, 그 하위 구인은 측정하고자 하는 특성을 제대로 설명하지 못함을 의미

수렴타당도 : 동일한 구인을 측정하는 검사들은 높은 상관을 나타내야 함

(순발력을 측정 = 50m, , 높의 검사 점수 간 상관= 동일한 구인을 측정)

판별타당도 : 서로 다른 구인을 측정하는 검사들은 낮은 상관을 나타내야 함

(심폐지구력을 재는 오vs 순발력을 재는 제= 검사 점수 간 상관= 서로 다른 구인을 측정)

 

(2) 실험설계법(t검증, F검증)

- 실험집단에는 하위 구인을 처치, 통제집단에는 처치하지 않고 두 집단의 검사 점수 간 차이가 나타나는지 측정하여 처치한 하위 구인이 측정하고자하는 특성을 제대로 설명하는 구인인지 아닌지를 판단

집단 차이 방법 : 새로운 축구 기능 검사를 선수 집단과 일반 집단에게 실시되었을 때, 선수 집단의 검사 점수가 높게 나타났다면 잘하는 선수와 못하는 일반인을 정확하게 구별하였으므로 구인 타당도가 확보된 것으로 판단. 체육 분야에서 전통적인 구인타당도 측정 방법

 

(3) 요인분석 (대표적인 요인(factor)을 추출)

- 여러 변수들 간 상호관계를 분석하여 상관이 높은 변수들을 모아 요인(factor)으로 명명하고 그 요인에 의미를 부여하는 통계 방법.

- 주로 스포츠 심리학, 사회학에서 설문지를 통해 측정하고자 하는 특성을 측정할 때 구인타당도 검증 방법.

 

(신뢰도)

신뢰도의 개념

- 신뢰도 = 일관성, 안정성, 정확성, 예측가능성

- 신뢰도가 높은 검사라고 해도 타당도가 반드시 높은 것은 아님

- 검사자는 타당도를 먼저 고려 신뢰도를 고려

 

(상관계수를 이용한 신뢰도)
재검사 신뢰도

- 동일한 검사를 동일한 집단에 두 번 실시하여 두 검사 간 상관으로 신뢰도를 추정

- 재검사 신뢰도의 문제점

사전, 사후 검사의 간격을 어떻게 잡느냐에 따라 오차가 발생

간격이 짧으면 기억, 연습효과 / 간격이 길면 행동 특성 변화 가능성(성장, 발육)

동일한 검사를 두 번 시행해야 하는 번거로움

 

동형검사 신뢰도

- 두 개의 동형검사를 만들고 두 검사 점수 간의 상관 계수로 신뢰도를 추정하는 방법

- 장점 : 기억, 연습효과, 시험의 간격 문제x, 간편한 신뢰도 추정

- 단점 : 완벽하게 동일한 동형검사를 만드는 것이 어려움.

 

내적 일관성 신뢰도

- 단 한 번의 검사로 신뢰도를 추정하는 방법 반분검사신뢰도, Cronbach (α), KR21

1. 반분검사 신뢰도

- 한번 시행한 검사 점수를 두 개로 나누어 두 검사 점수의 상관계수를 추정하는 신뢰도.

- 장점 : 재검사 / 동형검사 신뢰도와 같이 검사를 2번 시행할 필요가 없다.

- 단점 : 양분하는 방법에 따라 신뢰도 계수가 다르게 추정됨

체육 분야에서는 홀수와 짝수 시행으로 구분하는 것이 적절(피로와 연습효과 배제)

- 반분검사 신뢰도는 반분한 두 검사 점수를 다시 전체검사 신뢰도로 계산하는 절차가 필요하다.

Spearman-Brown 공식

전체검사신뢰도 = n·부분검사의 신뢰도(r) / 1+(n-1)·부분검사의신뢰도(r)

ex) 축구 리프팅 검사에서 홀수 시행과 짝수 시행의 상관계수가 0.8일 경우,

전체검사신뢰도 =

 

 

2. Cronbach α계수

- 검사를 인위적으로 반분하지 않고 문항의 분산을 이용하여 신뢰도를 추정하는 방법.

- 각 문항이 나타내는 일관성의 정도에 따라 추정

- 검사 총점의 분산에 비해 각 문항의 분산이 작을 때, 문항 간의 상관이 커져 문항내적 상관의 평균이 커지면 α계수가 큰 값을 나타내고 이는 설문지의 신뢰도 계수가 크다는 것을 의미.

 

3. 분산분석을 이용한 신뢰도 추정(급내상관계수)

- 분산분석(ANOVA)을 이용하여 신뢰도를 추정하는 방법 일원분산분석, 이원분산분석

 

4. 측정의 표준오차(SEM) 절대신뢰도

- 한 개인의 검사 점수에 대해 신뢰도를 평가할 때 사용하는 지수

- 한 사람에게 동일한 검사를 무수히 많이 시행하여 얻어지는 검사 점수의 표준편차를 의미.

- 측정의 표준오차가 작으면 검사 점수를 다시 측정했을 때에도 비슷하게 나올 가능성을 의미

- 측정의 표준오차(SEM) = 검사의표준편차

                                                                                     루트 1 - 검사도구의 신뢰도

ex) 고등학교 3학년 남학생을 대상으로 팔굽혀펴기 검사 결과

표준편차가 3, 팔굽혀펴기 검사도구의 신뢰도가 0.84 일 때,

측정의표준오차(SEM) = 3

= 3 0.4 = 1.2

측정의 표준오차(SEM) 객관도(평가자 내 신뢰도)

추정의 표준오차(SEE) 타당도(예측 타당도)

 

신뢰도 계수에 영향을 미치는 요인

1, 신뢰도 계수의 종류 : 하루에 여러 검사를 실시하는 것이 여러 날 실시하는 것보다 신뢰도

2. 피험자 집단의 동질성 : 집단의 능력 범위가 넓을 경우 신뢰도가 과대 추정

3. 검사의 특성 : 체력검사가 운동기능검사보다 신뢰도

4. 검사의 길이 : 여러 번 검사하거나 문항 수가 많을수록 신뢰도

5. 피험자는 검사를 받을 준비가 되어 있는가? : 검사에 대한 이해력, 신체 상황 등

6. 피험자의 수 : 피험자 수가 너무 적으면 집단의 특성이 너무 이질적 혹은 동질적

 

준거지향검사의 타당도와 신뢰도

- 준거지향검사의 타당도와 신뢰도는 검사 도구의 타당도, 신뢰도x 설정된 준거의 타당도, 신뢰도

(타당도)
영역관련타당도 (내용타당도)

- 검사가 준거 행동을 대표하는 정도.

- 준거 행동의 각 구성 요소가 준거지향검사의 구성 항목에 제대로 포함되어 있다면, 영역관련타당도가 확보된 것으로 해석할 수 있음.

 

결정타당도

- 피험자를 정확하게 분류한 비율. (=분류의 정확성)
- 기준을 설정하는 방법

판단적 방법 : 전문가 집단의 경험과 판단을 기초로 기준을 설정(설정된 기준의 자의성 문제)

판단-경험적 방법 : 전문가의 판단에 주로 의존하되, 경험 자료를 참고

경험-판단적 방법 : 경험 자료에 주로 의존하되, 전문가의 판단을 참고

 

참 상태 (완수 / 미수)

예측 상태

(완수 / 미수)

진완수자

오완수자

오미수자

진미수자

- 유관표

- 유관표에서 진완수자와 진미수자의 비율이 높을수록 결정타당도가 높다고 할 수 있음.

- 진완수자 + 진미수자 = 분류정확확률

- 오완수자 + 오미수자 = 분류오류확률

 

(신뢰도)

- 준거지향검사의 신뢰도는 검사에 의한 분류의 일관성을 측정하는 것

합치도(일치도)

- 우연적으로 합치되는 경우를 고려하지 않은 상태에서 분류의 합치 비율

- 합치도 계수는 두 번 반복하여 측정한 검사에서 A셀과 D셀의 비율을 더한 값으로 계산

 

2일째 검사 (숙달 / 미숙)

1일째 검사

(숙달 / 미숙)

A

B

C

D

- 합치도 계수는 완수자/미수자가 많을수록 커지며, 기준점 근처에 위치한 학생이 많을수록 작아진다.

- 합치도 계수의 영향 요인

기준 점수의 위치

검사의 길이

점수의 이질성

 

 

카파계수

- 우연히 두 번의 검사에서 모두 완수자나 미수자로 분류될 가능성을 배제한 신뢰도 지수

- 주변 비율을 이용하여 측정

Po - Pc / 1 - Pc

Po = 합치도계수, Pc = 우연에 의해 일치된 정도

45(A)

12(B)

8(C)

35(D)

ex)

= (0.45+0.12) (0.45+0.08) = 0.57 0.53 = 0.3021

(0.35+0.12) (0.35+0.08) = 0.47 0.43 = 0.2021

= 0.5042

= 0.80 0.5042 / 1 0.5042= 0.597

, 합치도는 0.80이며, 카파계수는 0.597, 카파계수는 합치도에 비해 작게 나타난다.

이는 카파계수가 우연적 합치의 영향을 배제한 지수이기 때문이다.

 

준거지향검사의 문제점

1. 자의성

- 어떤 방법을 사용하더라도 준거설정 과정에서의 평가자의 자의성이 개입되는 것을 부정하기 어렵다.

2. 분류오류

- 집단을 구분하는 준거점수가 단 하나이기 때문에 오완수자 혹은 오미수자로 잘못 분류된 피험자가 나타난다.

 

문제점을 해결하기 위한 방안

1. 자의성

가능한 과학적인 방법을 적용

충분한 경험을 가진 전문가 집단으로 기준을 설정

2. 분류오류

검사를 반복 측정하여 좀 더 정확한 분류를 함

2개 이상의 기준점수를 설정하여 분류오류의 가능성

 

학교체육에서 측정과 평가

(성적 부여 방법)

향상도 점수의 성적 부여 문제점

1. 향상도 점수의 비신뢰성

사전검사에서 학생들이 최선을 다하지 않을 가능성

2. 척도 단위의 비동질성

사전검사의 점수가 높은 학생과 낮은 학생의 향상도 점수를 동일한 단위로 해석이 어려움

3. 사전검사를 할 때 학생들의 동기화 어려움

사전검사 실시 향상도 점수에 대한 정보를 공개하지 않고 충분한 연습시간을 주는 것이 좋음.

4. 향상도 점수로 학생들의 성취 수준을 평가하기 어려움

무조건 높은 향상도 점수가 성공적인 목표를 달성했다고 해석x

 

성적 부여 방법

1. 규준지향검사의 성적 부여 방법

(1) 표준 편차 방법

- 검사 점수가 정규 분포일 때, 검사점수의 평균과 표준편차를 이용하여 성적을 부여하는 방법.

(2) 비율 방법

- 교사가 각 등급의 몇 %의 학생들이 포함될 것인지를 사전에 결정하여 해당 비율의 인원만큼씩 성적을 주는 방법.

(3) 규준 방법

- 미리 개발된 전국적인 규준에 비추어 성적을 주는 방법.

검사 받는 학생 집단의 특성에 크게 영향을 받지 않으며 일관성을 갖는다는 장점

 

2. 준거지향검사의 성적 부여 방법

(1) 계약 방법

- 학생들이 일정 수준 이상의 능력을 발휘하였을 때 합격을 판정할 것임을 사전에 약속하는 방법.

(2) 정답 비율 방법

- 주어진 검사 문항에서 일정 비율 이상에 정답 했을 때 해당하는 등급을 부여하는 방법.

 

 

수행평가

수행평가의 개념

- 수행평가는 학생들에게 주어진 실제적이고 진솔한 과제를 학생들이 수행하고, 그러한 과정을 통해서 나타나는 지식, 기능, 태도에 대해 학습과정에서 수집한 자료에 근거하여 전문가적인 견해로 판단하는 평가 방식.

 

(수행 평가의 양호도)

수행 평가의 타당도

1. 교수 타당화

- 교사가 설계한 수업 및 수업목표를 충실히 수행했는가의 정도. 교사가 계획한 대로 수업을 진행하고 수업목표를 달성했다면 교수 타당화가 보장되었다고 해석 가능.

2. 구인 타당화

- 실제로 수업에서 교사가 의도했던 바를 수행과제를 통하여 얼마나 달성하였는가의 문제.

ex) 고등학교 체육교사가 농구 수업 시간에 패스를 적절하게 구서하는 것을 목표로 하고, 실제 경기에서 학생들이 적절한 패스를 구사했다면 구인 타당도가 만족되었다고 할 수 있음.

3. 내적 타당화

- 계획된 수행과제를 통해서 의도한 정신기능을 발달시켰다면 내적 타당화가 만족된 것.

(수행평가의 종류) 서술형, 논술형, 구술 시험, 실기시험, 포트폴리오

포트폴리오

- 학생들의 발달과정을 지속적으로 평가할 수 있도록 모아 놓은 모음집

- 포트폴리오의 효과

1. 개별 학습의 효과

2. 책임감과 활동적인 학습 강조

3. 피드백과 연속적인 평가

4. 자기 반성적 사고, 학습 성과의 증명 등이 이루어짐

 

 

검사구성의 원리

(인지적 영역 검사의 구성 - 문항 분석)

고전검사이론에 의한 문항 분석

- 기본가정 : 관찰 점수 = 진점수 + 오차점수

1. 문항 난이도 : 문항의 쉽고 어려운 정도를 나타내는 지수

문항난이도(P)= 답을 맞춘 수검자수/총수검자수100

2. 문항 변별도 : 문항이 능력에 따라 피험자를 변별하는 정도를 나타내는 지수

- 능력이 높은 수검자가 답을 맞히고, 낮은 수검자가 틀릴수록 변별력이 있다고 해석.

3. 문항 추측도 : 추측을 통하여 문항을 맞출 수 있는 정도를 나타내는 지수

- 정보를 직접적으로 얻어 낼 수 없으므로 확률이론으로 추정

 

‧▶ 문항반응이론에 의한 문항 분석

- 각 문항은 문항 고유의 문항특성곡선을 이용하여 문항의 속성을 파악한다.

1. 문항 난이도 : 답을 맞힐 확률이 0.5에 해당하는 능력 수준의 점

2. 문항 변별도 : 문항이 우수한 학생과 우수하지 못한 학생을 구별하는 정도

- 문항특성곡선의 기울기가 급할수록 변별력이 높음.

3. 문항 추측도 : 능력이 전혀 없는 학생도 추측에 의해 문항의 답을 맞출 수 있는 정도.

- 4지 선다형 문항에서 일반적으로 문항 추측도는 0.2를 넘지 않는다.

- 문항 추측도가 낮을수록 좋은 문항이며, 높을수록 변별력이 떨어진다고 볼 수 있다.

 

체형측정

셀돈(Sheldon)의 분류

1. 내배엽형 : 소화기관이 잘 발달되어 있고 전반적으로 둥근 편이며 비만형.

2. 중배엽형 : 뼈와 근육이 잘 발달되어 있고 스포츠하기에 가장 이상적인 체형.

3. 외배엽형 : 피부조직, 신경 및 감각계통이 잘 발달되어 있으나 근육, 뼈 등이 가늘며 긴 체형.

- 체형을 평가하는데 있어서 3체형을 각각 7단계로 나누고 (7x7x7) = 343의 신체유형을 밝힘.

- 내배엽형-중배엽형-외배엽형 순으로 조합하여 체형을 표시

히스-카터는 셀돈이 유전적 본질이라고 생각한 체형을 현상적 체형이라고 정의하고 수정된 체형분류법을 만들었다. (체형의 범주를 13가지로 분류)

 

변이계수

- 표준편차는 집단의 점수가 흩어져 있는 정도를 측정하고 비교할 수 있다. 그런데 평균의 차이가 큰 집단을 표준편차로 비교하는 것은 오류를 범할 수 있다.

- 따라서 이럴 경우에 표준편차를 평균의 비율로 나타낸 상대 변산도 값인 변이계수를 사용해야 한다.

변이계수(변동계수) = 표준편차 / 평균

 

양분상관계수

- 명명척도와 비율척도의 상관을 재려고 할 때는 양분상관계수를 적용한다.

ex) 선수들의 불안 수준을 높음 / 낮음으로 분류한 후 멀리뛰기 기록과의 상관을 잴 때

 

적률상관계수, 순위()상관계수, 양분상관계수

1. 적률상관계수(Pearson) : 동간척도 이상에서 적용(연속적 변인)

2. 순위차상관계수(Spearman) : 서열척도일 때 적용

3. 양분상관계수 : 명명척도와 비율척도의 상관을 잴 때 적용

 

상관계수와 결정계수

1. 상관계수(r) = 서열척도

2. 결정계수(r²) = 비율척도

상관계수의 자승 결정계수(두 변인이 공통적으로 관련되어 있는 변량 비율. %로 표기 )

 

바로가기

https://paidonomus.tistory.com/21  [체육수업모형]

https://paidonomus.tistory.com/11  [체육교수방법론, 교수법, 스타일]

https://paidonomus.tistory.com/13  [체육 수업 모형 개관]

https://paidonomus.tistory.com/22  [운동역학]

https://paidonomus.tistory.com/27  [운동생리학(세포, 에너지원, 운동 후 회복 등)]

https://paidonomus.tistory.com/31  [운동생리학2 (근육계, 신경계, 호흡계, 근세사활주 등)

https://paidonomus.tistory.com/34  [운동생리학3 (순환계, 내분비계, 에너지소비량측정) & 트방]

https://paidonomus.tistory.com/38  [스포츠 사회학(이론,스포츠와 정치,경제,교육,종교,대중매체]

https://paidonomus.tistory.com/39  [스포츠 사회학 2(스포츠와 사회화, 사회 계층, 사회 집단 등)

https://paidonomus.tistory.com/43  [2015 개정교육과정 체육 각론 및 필수 암기]

https://paidonomus.tistory.com/48  [서양체육사]

https://paidonomus.tistory.com/49  [한국체육사]

https://paidonomus.tistory.com/54  [스포츠 심리학]

https://paidonomus.tistory.com/61   [운동행동심리학]

https://paidonomus.tistory.com/62  [운동학습 및 제어]

https://paidonomus.tistory.com/68  [체육측정평가]

반응형